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The Story
of the 120-Cell

John Stillwell

O
ne of the most beautiful objects in
mathematics is the regular polytope in
R4 whose boundary consists of 120
dodecahedral cells. This 120-cell is a
rarity among rarities because it lives in

three very special worlds. Its home is among the
regular polytopes in R4, but it also lives in the 
remarkable sphere S3 and in the quaternions H.
And if this is not enough, the 120-cell encodes the
symmetry of the icosahedron and the structure of
the Poincaré homology sphere. All these facts have
been known since the 1930s, but the story can be
told more elegantly in contemporary language,
and it can be illustrated better than ever before 
with the help of computer graphics. Moreover, the
new illustrations put the 120-cell in a context of 
current interest, the geometry of soap bubble 
configurations, by mapping it in a natural way 
into R3 (cover illustration).

Telling the story in contemporary language 
has the danger that certain connections become
“obvious”, and it is hard to understand how our
mathematical ancestors could have overlooked
them. However, there is no turning back; we can-
not stop seeing the connections we see now, so 
the best thing to do is describe them as clearly as
possible and recognise that our ancestors lacked
our advantages.

The story begins with the first encounters with the
fourth dimension in the 1840s, becomes entangled
with group theory in the 1850s, and interacts 
with topology around 1900. But to set the scene
properly, we should review the regular polyhedra, 
because they are the origin of everything we are 
going to discuss.

The Regular Polyhedra
The five regular polyhedra existed before human
history (for example, in the form of crystals 
and viruses), and they certainly made an early 
appearance in the history of mathematics. They 
are the climax of Euclid’s Elements.

There are several proofs that these five poly-
hedra are the only regular ones: the classical 
proof enumerating which polygons can occur as
faces and which angle sums are possible at a 
vertex, the topological proof showing that every-
thing is controlled by the Euler characteristic, and
the nice spherical geometry proof of Legendre. A
less elegant proof, but one that generalises to
higher dimensions, considers the ratio of edge
length to the diameter of the circumscribed sphere
and relates it to the corresponding ratio of the
lower-dimensional vertex figure (the convex hull of
the neighbouring vertices of a given vertex).

Call this ratio ER. It is easy to prove that if Π
is a polyhedron with p-gons as faces and if the 
polygon Π′ is its vertex figure, then

ER(Π)2 = 1−
cos2 π

p

ER(Π′)2 .

In particular, we must have 1 > cos πp /ER(Π′) ; and

when Π′ is a regular q-gon, then ER(Π′) = sin π
q , so

cos
π
p
< sin

π
q
.

The only pairs (p, q) of edge numbers satisfying 
this condition are those corresponding to the five
standard polyhedra.
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Figure 1. The five regular polyhedra.
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The advantage of this proof is the dimension 
reduction from Π to Π′. A generalisation of the
proof allows the regular figures Π in Rn+1 to be
derived from the known regular figures in Rn.

A different dimension reduction, useful for 
purposes of visualisation, can also be illustrated
with the regular polyhedra. The vertices of a 
regular polyhedron Π lie on the sphere S2 in R3,
so projecting Π from its centre onto S2 produces
a regular tiling of S2 by spherical polygons. This
tiling can in turn be mapped onto R2 by stereo-
graphic projection. Felix Klein used this idea to 
visualise the symmetry groups of the regular 
polyhedra, and some magnificent pictures of the
relevant tilings were produced at his instigation.
Two of them are shown in Figure 2, which is from
Klein and Fricke [10, pp. 105–106]. These tilings 
result from the icosahedron (and its dual dodec-
ahedron) when each face is subdivided by its axes
of symmetry.

The same idea applies to regular polytopes in
R4 and is particularly useful for visualising the
120-cell. Projecting the 120-cell onto S3 and then
onto R3 gives images that are visible and mathe-
matically significant. In particular, we shall find that
the 120-cell gives another view of the rotation
group of the icosahedron.

Klein discovered that the rotation groups of
the tetrahedron, cube (and its dual octahedron), 
and icosahedron (and its dual dodecahedron) are

none other than the alternating and symmetric
groups A4, S4, and A5 respectively. In his famous 
Lectures on the Icosahedron, Klein made a meal of
the resulting connection between the regular poly-
hedra and the solution of quintic equations.

But as early as 1856, long before Klein’s work,
William Rowan Hamilton found the algebraic equiv-
alent of Figure 2: a presentation of the icosahedral
group by generators and relations. This was the
first significant result in combinatorial group 
theory. In a follow-up paper [8, p. 609] Hamilton
presented all three polyhedral groups: the group
T of rotations of the tetrahedron, the group O
of rotations of the octahedron (and cube), and 
the group I of rotations of the icosahedron (and
dodecahedron).

Hamilton defined I by three symbols ι, κ, and
λ, and the relations

ι2 = κ3 = λ5 = 1, λ = ικ.

Since λ is redundant, the group may be defined
more concisely by

ι2 = κ3 = (ικ)5 = 1.

The symbol ι can be interpreted as a half turn 
of an icosahedron about an axis through the 
midpoints of opposite edges. (In Figure 2 such a
midpoint corresponds to a vertex where two 
black and two white triangles meet.) The symbol
κ represents a 1/3 turn about an axis through the
midpoints of opposite faces (in Figure 2, vertices
where three black and three white triangles meet).

The tiling in Figure 2 is thus a picture of 
Hamilton’s presentation of I , and of course it fits
the underlying icosahedron/dodecahedron like a
glove. Nevertheless, one might wonder whether
there is a more homogeneous picture of I , one in
which there is only one type of vertex instead of
three. Later we shall see that such a picture 
exists in three dimensions, and it is essentially
the 120-cell.

Hamilton had a combinatorial interpretation of
ι, κ, and λ as rules for “passage from face to face”
on the polyhedron and may not have seen them
as rotations. What is more surprising, coming from
the inventor of the quaternion algebra, is that he
did not regard ι, κ, and λ as quaternions. Today
we are inclined to think that quaternions are the
perfect way to represent rotations, and Hamilton
is supposed to be the originator of this idea!

Quaternions
The quaternion algebra H belongs to the exclusive
family of algebras R, C, H, and O, which are the
only normed algebras over R—algebras for which
the product uv of any elements u and v satisfies
|uv| = |u||v| . Of the four algebras, H is probably
the most fascinating. The complex field C is old
hat to us now, and the octonion algebra O can be
viewed (a little unfairly, but it is outside the scope

Figure 2. Icosahedral tilings of S2 and R2 .
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15 = 5 · 3 = (22 + 12 + 02)(12 + 12 + 12),

for example. Another example, 63 = 21 · 3 (which
uses only positive squares), had been published by
Legendre, but Hamilton didn’t come across it until
after he had given up on R3.

He abandoned triples on 16 October 1843, when
he saw that he needed not two imaginary units i
and j but three: i, j , and ij = k with

i2 = j2 = k2 = ijk = −1.

These relations imply that ij = −ji , so the product
is not commutative, but Hamilton was prepared 
for this possibility. He had already entertained it
in his unsuccessful search for a product of triples.
The product of quadruples has the saving grace 
of a multiplicative norm, so Hamilton had achieved
his main goal: he had found a normed algebra 
of quadruples, now known as the quaternion 
algebra H.

A consequence of the multiplicative norm is a
four-square identity, which Hamilton at first
thought was his own discovery. In fact, Euler knew
it in 1748, and Lagrange used it in his well-known
(to some mathematicians!) proof that every 
positive integer is the sum of four squares. 
Moreover, a remarkable restatement of the four-
square identity as a complex two-square identity
occurs in the unpublished work of Gauss (Werke,
vol. 3, 383–4):

(|a1|2 + |b1|2)(|a2|2 + |b2|2)

= |a1a2 − b1b2|2 + |b1a2 + a1b2|2.
With its amazing similarity to the Diophantus 
identity, the Gauss identity prompts a definition
of quaternion multiplication (equivalent to 
Hamilton’s) as a product of pairs (a, b) of complex
numbers,

(a1, b1)(a2, b2) = (a1a2 − b1b2, b1a2 + a1b2).

The complex two-square identity is related to
another formula found by Gauss around 1819 (and
discussed below), so perhaps it dates from the
same period. With hindsight these results of 
Euler and Gauss may be regarded as “sightings” of
H , analogous to Diophantus’s sighting of C. 
Another sighting of H, by Rodrigues in 1840, will
be described when we discuss how quaternions 
are related to rotations. Of course, Hamilton’s 
priority is secure; the merit of his discovery is
only increased by mathematicians as great as Euler
and Gauss having missed it, despite the glimpses
they had caught.

Rotations
Hamilton was certain, as soon as he discovered the
quaternions, that they would be worth studying for
the rest of his life. His friends were not so sure.
On 26 October 1843, John Graves, who had worked

of this article) as a spinoff of H. The story of H is
of course the story of Hamilton, but it is also the
story of several other mathematicians, some of
whom “sighted” aspects of quaternions earlier but
did not fully understand what they had seen.

Hamilton found the quaternions while searching
for normed algebras over R of arbitrary dimension.
He observed in 1835 that C could be defined 
abstractly as R2 with the usual vector sum and 
with the far less obvious product defined by

(a1, b1)(a2, b2) = (a1a2 − b1b2, b1a2 + a1b2).

This formula is inspired by hindsight, of course.
It is precisely the definition we get by interpreting
each complex number a + ib as the ordered pair
(a, b) of reals and working out which pair corre-
sponds to (a1 + ib1)(a2 + ib2) when i2 is assumed
to equal −1. But it could have come from insight:
a sufficiently clever mathematician could have
seen it coming from the two-square identity. This
identity says that sums of squares are “multi-
plicative”, in the sense that a number which 
factorises into sums of two squares,

(a2
1 + b2

1)(a2
2 + b2

2),

is itself a sum of two squares, namely,

(a1a2 − b1b2)2 + (b1a2 + a1b2)2.

This identity was probably known to Diophantus
and was explicitly mentioned by later commenta-
tors on his work, such as Fibonacci in his 1225 Book
of Squares. Today we would say that the identity
expresses the multiplicative property of the norm
a2 + b2 of the pair (a, b) . (Diophantus’s under-
standing was similar, though more concrete: 
(a, b) was the right-angled triangle with sides a and
b, while a2 + b2 was the square on the hypotenuse.)
This is the property that makes C a normed alge-
bra, and it is the property that Hamilton hoped 
to find in higher dimensions.

His first attempt was to find a product formula
for triples (a, b, c) = a + ib + jc that would make 
R3 a normed algebra. Hamilton worked from 
about 1830 to 1843 on this problem, surprisingly
unaware of known obstructions to its solution.
The product formula on R2 = C implies, as we
have seen, that sums of two squares are multi-
plicative. For example—and this is precisely 
the example of Diophantus from which later 
commentators inferred the two-square identity—

65 = 13 · 5 = (32 + 22)(22 + 12),

and therefore

65 = (3 · 2− 2 · 1)2 + (2 · 2 + 3 · 1)2 = 42 + 72.

A similar product formula with multiplicative norm
on R3 would imply that an integer which factorises
into sums of three squares is itself a sum of three
squares, but this is simply not true! Consider
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with Hamilton for years in the search for normed
algebras, wrote:

You must have been in a very bold
mood to start the happy idea that ij
might be different from ji…. Have you
any inkling of the existence in nature
of processes, or operations, or phe-
nomena, or conceptions analogous to
the circuit

ij = −ji = k
jk = −kj = i
ki = −ik = j?

Hamilton replied with a hint of applications to
physics and announced that quaternions could
certainly be used to derive theorems of spherical
trigonometry, but Graves was not satisfied:

There is still something in the system
that gravels me. I have not yet any clear
views as to the extent to which we 
are at liberty arbitrarily to create 
imaginaries, and to endow them with
supernatural properties….But suppos-
ing that your symbols have their 
physical antetypes, which might have
led to your quaternions, what right have
you to such luck, getting at your system
by such an inventive mode as yours?

(For more of these letters, see [7, vol. 3, p. 443].)
Of course, Graves’s remark about luck was

tongue-in-cheek, and he got into the act himself in
December 1843 by discovering an eight-square
identity and with it the normed algebra O of 
octonions—but that is another story. The answer
to his question was that “physical antetypes” of the
quaternions had already been sighted twice, by
Gauss and by Rodrigues. They are rotations in R3.

Again, there was a precedent in the history of
complex numbers, which involves rotations in R2.
Around 1590 Diophantus’s process of generating
the side pair (a1a2 − b1b2, b1a2 + a1b2) of a right-
angled triangle from side pairs (a1, b1) and (a2, b2)
was found to hold a second secret. Viète showed,
in his Genesis triangulorum, that the process not
only multiplies the hypotenuses, it also adds the
angles (between the first side and the hypotenuse).
He had sighted the relation between angles and
complex numbers that later took the shape of 
de Moivre’s theorem.

The Gauss process, which takes pairs (a1, b1)
and (a2, b2) of complex numbers and forms the
pair (a1a2 − b1b2, b1a2 + a1b2) , likewise combines
rotations in R3. Gauss discovered this around 1819
(Werke, vol. 8, 354–362) by stereographically pro-
jecting the sphere S2 onto the plane. Interpreting
the plane as C, he found that each rotation of S2

induces a map of C of the form

z 7→ az + b
−b̄z + ā

.

Thus each rotation of S2 (hence of R3 ) may 
be parametrised by a pair (a, b) of complex 
numbers. When the rotations parametrised by 
the pairs (a1, b1) and (a2, b2) are combined, the 
resulting rotation is the one parametrised by
(a1a2 − b1b2, b1a2 + a1b2) .

Gauss did not publish this result, however, and
it was rediscovered in 1879 by Cayley [1, vol. X, 
p. 153]. It leads to an elegant matrix representation
of H , already hinted at in Cayley’s 1858 paper 
on matrices [1, vol. II, p. 491]. Instead of the linear

fractional function z 7→ az + b
−b̄z + ā

, one takes the 
matrix (

a b
−b̄ ā

)
,

which can be decomposed into a sum

α1 + βi + γj + δk

by setting a = α + iβ and b = γ + iδ, where α,β,γ, δ
are real. The matrices 1, i, j,k are then(

1 0
0 1

)
,
(
i 0
0 −i

)
,
(

0 1
−1 0

)
,
(

0 i
i 0

)

respectively, and they satisfy

i2 = j2 = k2 = ijk = −1.

Thus Cayley’s matrices α1 + βi + γj + δk corre-
spond isomorphically to the quaternions
α + iβ + jγ + kδ.

Passing from the linear fractional function
az + b
−b̄z + ā

to the quaternion 
(
a b
−b̄ ā

)
introduces some

ambiguity as far as rotations are concerned. Infi-
nitely many matrices correspond to the same 
function, and even if we restrict to quaternions with
norm |a|2 + |b|2 = 1 , each rotation corresponds
to a pair ±

(
a b
−b̄ ā

)
. This cannot be helped, because

the quaternions of norm 1 form an S3, whereas 
the rotations of S2 form the projective space 
RP3, which is not homeomorphic to S3. Indeed,
RP3 is the space of antipodal point pairs of S3,
which are precisely the matrix pairs ±

(
a b
−b̄ ā

)
.

Since two quaternions correspond to each ro-
tation, the polyhedral groups T , O, and I “lift” to
quaternion groups of twice their respective sizes:
the binary tetrahedral group T of 24 elements,
the binary octahedral group O of 48 elements, and
the binary icosahedral group I of 120 elements.

One might ask how are the four real parameters
α,β,γ, δ in the quaternion pair ±(α + iβ + jγ + kδ)
related to geometric parameters of the corre-
sponding rotation? The answer is remarkably 
simple:
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α = cos
θ
2
, β = λ sin

θ
2
, γ = µ sin

θ
2
, δ = ν sin

θ
2
,

where (λ,µ, ν) is a unit vector in the direction of the
rotation axis and θ is the amount of rotation about
the axis. This was discovered independently by
Hamilton and Cayley in 1845 (see [1, vol. I, p. 123]).
Cayley (as usual, better read than Hamilton) also 
noticed that the same parameters had already been
used by Rodrigues in 1840, with a rule for comput-
ing the parameters of a composite rotation that was
essentially the quaternion multiplication rule. Later,
when Gauss’s unpublished work came to light, it
was found that he had the rule too.

In January 1863 Cayley [1, vol. V, p. 539] used
the geometric parameters to write down the mem-
bers of the binary polyhedral groups T, O, and I as
quaternions. They form remarkably symmetrical
sets in R4 , and—unknown to Cayley—they had 
already been observed in geometry.

The Regular Polytopes
The quaternions were part of a wave of geometry 
in higher dimensions that welled up, rather 
mysteriously, in 1843–1844. Until that time, geom-
etry in more than three dimensions had been 
even less welcome than non-Euclidean geometry.
Yet in 1843, independently of Hamilton, Cayley
published a paper entitled “Chapters in the 
analytical geometry of (n) dimensions”, and 
Grassmann was writing the first edition of his
book Ausdehnungslehre, published in 1844. 
Admittedly, the latter works barely registered 
in the general mathematical consciousness, but 
perhaps a mathematical unconsciousness 
was at work. By 1852 another mathematician 
working in obscurity had answered all the basic
questions about higher-dimensional regular 
polyhedra, or polytopes as they are now called.

Ludwig Schläfli obtained these results, and much
more, in his Theorie der vielfachen Kontinuität
[13], written in 1852 but not published in its 
entirety until 1901, six years after his death. His
results on polytopes did not become generally
known until others rediscovered them in the 1880s.

Schläfli’s main results were obtained using the
ER formula mentioned in the section on polyhedra
and may be expressed in current terminology as
follows.

• In each Rn there are generalisations of the
tetrahedron, the cube, and the octahedron,
called the n-simplex, n-cube, and n-orthoplex
respectively.
The only regular polytopes other than these
are the dodecahedron and icosahedron in R3

and three special polytopes in R4. The latter
are called the 24-cell, 120-cell, and 600-cell 
because of their respective numbers of 
boundary cells. The 120-cell and 600-cell are
dual to each other.

• In each Rn there is a generalisation of the cube
tiling, called the n-cube tiling.
The only regular tilings other than cube tilings
are two regular tilings of R2—the dual tilings
by triangles and hexagons—and two dual
tilings of R4, by 24-cells and 4-orthoplexes.

Schläfli’s monograph contains no pictures,
which may be one reason for its poor reception.
The first rediscovery of the regular polytopes, 
by Stringham [15] in 1880, is accompanied by 
several illustrations, including line drawings of
the 4-simplex, 4-cube, and 4-orthoplex. Today 
computer-generated pictures of the regular poly-
topes may be seen at many Web sites, often 
animated and/or in stereoscopic pairs. One 
good starting point is http://www.ics.uci.edu/
~eppstein/junkyard/polytope.html.

However, the pictures of the four simplest regu-
lar polytopes in Hilbert and Cohn-Vossen’s 1932
Anschauliche Geometrie [9] remain hard to beat, in
my opinion. Figure 3 shows their beautifully drawn
pictures of the 4-simplex, 4-cube, and 4-orthoplex,
which are almost palpably 3-dimensional. And Fig-
ure 4 is their picture of the 24-cell.

Strictly speaking, of course, these pictures are
projections of the vertices and edges of the poly-
topes onto R2, but we read them as frameworks
in R3 . These frameworks outline cells that are
projectively distorted images of boundary cells of
the polytopes in R4. The R3 image of the 4-sim-
plex, for example, is a big tetrahedron with four
smaller tetrahedra inside it. These five tetrahedra
are the images of the five boundary tetrahedra of
the 4-simplex (analogous to the common projec-
tion of a tetrahedron onto R2 , which maps the

Figure 3. The three simplest regular polytopes.
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It seems that Steinitz [14, p. 125] was the first
to notice that the vertex set of the 24-cell is the 
binary tetrahedral group T. He also recognised the
vertex set of the 600-cell as the binary icosahedral
group I. But strangely, his remarks went unno-
ticed until the group I had been through the mill
of topology and combinatorial group theory. This
unexpected turn in the story began in 1904 and will
be recounted in the next section.

The Poincaré Homology Sphere
In 1895 Poincaré took a new approach to geome-
try in higher dimensions by focussing on topology.
In his paper “Analysis situs” and five “Complé-
ments” he introduced homology and homotopy as
tools for topological classification, and he posed

a famous question that remains open to this day:
Is every compact 3-manifold with trivial funda-
mental group homeomorphic to S3? At first he
thought that any compact 3-manifold with trivial
homology might be homeomorphic to S3, but 
this was ruled out by his discovery of the Poincaré 
homology sphere in the fifth “Complément” (1904).

He made this counterexample by gluing to-
gether two solids bounded by surfaces of genus 2,
with a certain matching of canonical curves. 
From his construction he computed generators
and relations for the fundamental group π1, and
he showed that the homology group H1 is trivial
by abelianising π1 (though the abelianised group
seems to collapse by accident). Finally, he proved
that the constructed π1 is not trivial by showing
that it has I as a homomorphic image. The
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Figure 5. This van Oss projection of the 600-
cell, which dates from 1901, received wide
circulation as the frontispiece of Coxeter’s

1948 classic Regular Polytopes and (redrawn)
in his Regular Complex Polytopes.

four boundary triangles onto one big triangle with
three small ones inside it).

The other pictures similarly show:
• The 4-cube is bounded by 8 ordinary cubes,

and thus it may also be called the 8-cell.
• The 4-orthoplex is bounded by 16 tetrahedra,

and thus it may also be called the 16-cell.
• The 24-cell is bounded by 24 octahedra and has

24 vertices. Its dual polytope, which has a 
vertex at the centre of each boundary cell of
the 24-cell, is therefore another 24-cell.

It is quite easy to find coordinates for the 
vertices of these polytopes. The simplest is the 
4-orthoplex, whose vertices can be chosen to lie at
the intersections of the unit 3-sphere in R4 with
the coordinate axes. The 24-cell can be constructed
by truncating a 4-orthoplex by hyperplanes through
the midpoints of its edges and orthogonal to the
coordinate axes. By taking the dual and scaling 
suitably, we get a 24-cell whose vertices are the 16
points (

±1
2
,±1

2
,±1

2
,±1

2

)
and the 8 points

(±1,0,0,0), (0,±1,0,0), (0,0,±1,0), (0,0,0,±1).

These are the 24 unit quaternions

±1
2
± i

2
± j

2
± k

2
, ±1, ±i, ±j, ±k,

which represent (in antipodal pairs) none other
than the 12 rotations of a regular tetrahedron!
This is easy and fun to check, using the Gauss-
Rodrigues-Cayley parameters for rotations given
in the preceding section.

Figure 4. The 24-cell.
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cell, but one that Euclid would have endorsed, 
involving only constructible numbers.

Before leaving the subject of topology, we should
mention that quaternion multiplication makes the
sphere S3 of unit quaternions into a continuous
group, since the product and inverse operations
are obviously continuous functions of position in
S3. Similarly, the sphere S1 of unit complex num-
bers is a continuous group under multiplication of
complex numbers. In 1933 Élie Cartan showed
that no other sphere has a continuous group struc-
ture, so S3 and S1 are exceptional in this respect.
One wonders whether they owe their exceptional
position to the exceptional algebras C and H…or
is it the other way around?

The 120-Cell
Despite the dual relationship between the 600-cell
and the 120-cell, the latter seems more difficult to
draw. The pictures of it in Coxeter’s 1948 book are
photographs of wire models made by Paul
Donchian, and the first published drawing that I
am aware of is Figure 6 by B. L. Chilton, which 
appeared in Coxeter’s 1961 book [3].

This picture is an ordinary projection from R4

to R2, as may be guessed from its straight edges.
It is a very beautiful graph, but also very flat: one
can see pentagons, but it is hard to see
dodecahedra, let alone combine them into a men-
tal image of a projection of the 120-cell into R3.

A more convincingly “3-dimensional” image of
the 120-cell is obtainable by projection onto S3 and
then stereographic projection onto R3. Projecting
the 120-cell from its centre onto the S3

Figure 6. Chilton’s drawing of the 120-cell. 
H. S. M. Coxeter wrote me about this projection:
“When I visited van Oss around 1930, he
showed me a faint pencil drawing of the 120-
cell by Wythoff, made long ago, but it was too
faint for reproduction. Of course it was the
same as Chilton’s.”

appearance of the icosahedral group I at this point
is a complete surprise, because Poincaré’s con-
struction does not have any obvious symmetry.

In 1910 Dehn gave a new homology sphere con-
struction, which introduced the surgery technique
(see [6, p. 116]). By cutting a trefoil-knotted solid
torus out of S3 and “sewing it back differently”, he
was able to improve on Poincaré’s construction in 
two respects. The group H1 was obviously trivial by
properties of the knot, and π1 could be explicitly
identified as I , the binary icosahedral group. Since
I is a homomorphic image of I , it was conceivable 
that Dehn’s homology sphere was the same as 
Poincaré’s, but this fact was established by Weber 
and Seifert [20] only in 1933.

In 1929 Hellmuth Kneser [11] revived interest
in the Poincaré homology sphere by showing 
that Dehn’s version of it could be constructed by
identifying opposite faces of a dodecahedron.
Threlfall and Seifert [19] revamped this idea by
working in the universal cover S3 of the homology
sphere. There one sees a tiling by 120 congruent
dodecahedral cells, each being a fundamental 
region for the action of I . This sounds suspiciously
like the tiling projected onto S3 from the centre of
the 120-cell in R4! Indeed it is, so Threlfall and
Seifert were giving a geometric construction of
the Poincaré homology sphere—as the quotient of
S3 by I—and a new interpretation of the 120-cell
as its universal cover.

However, they did not at first know whether
their subdivision of S3 into 120 cells was the 
projection of the 120-cell. The missing piece of 
the puzzle was Steinitz’s 1916 remark that I is the
vertex set of the 600-cell. Threlfall evidently saw
this in 1932 and put two and two together. In a
short paper [18] he improved on Steinitz by show-
ing that the vertices and edges of the 600-cell form
a group diagram of I . The diagram has a vertex for
each element g ∈ I and, for each gi in a certain set
of six generators, an edge from vertex g to vertex
ggi. In the dual 120-cell the twelve neighbours of
the dodecahedral cell g represent the twelve neigh-
bouring elements gg±1

i of g ∈ I—exactly as in the 
universal cover of the homology sphere.

The 120-cell can thus be regarded as the picture
of I for Threlfall’s generators g1, g2, . . . , g6, just as
Figure 2 is the picture of I for Hamilton’s genera-
tors ι and κ.

Threlfall’s result brought the idea of I as the 
vertex set of the 600-cell back into mathematical
consciousness, and it was developed further by
Coxeter [5]. The quaternion generators of I give nice
symmetrical coordinates for the vertices of the
600-cell. Like the vertices of the icosahedron whose
symmetries they represent, they can be described
quite simply and symmetrically in terms of the
golden ratio τ = (1 +

√
5)/2. Thus we not only 

have a construction of the 600-cell and the 120-
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containing its vertices gives a tiling of S3 by con-
gruent regular spherical dodecahedra.

This tiling has the same combinatorial structure
as the 120-cell, but its dodecahedral cells are
slightly “inflated”. Their faces are portions of great
spheres in S3 (the analogues of great circles in S2),
and since three cells meet along each edge, their
dihedral angles are 120◦ . (The dihedral angles of
a Euclidean dodecahedron are about 116◦34′, so
the “inflation” is very slight.) Also, four cells meet
at each vertex, corresponding to the four faces of
the dual tetrahedron in the 600-cell.

When this 120-cell tiling of S3 is stereographi-
cally projected onto R3 , spheres go to spheres
and angles are preserved by the basic properties
of stereographic projection. We therefore get a
partition of R3 into 120 regions bounded by por-
tions of spheres. Moreover, the spherical surfaces
meet at 120◦ along each edge, and four of them
meet at each vertex.

This is exactly what soap bubbles do! At least,
all observed clusters of soap bubbles behave this
way, and their mathematical models do also, by a
deep theorem of Jean Taylor [17], proved only in
1976. Thus in principle it is possible to model the
120-cell by a soap bubble cluster! And thanks to
computer graphics, it is not necessary to work
with actual soap. John M. Sullivan has created
beautiful simulations of a soap bubble 120-cell,
shown in Figure 7 and on the cover.

The mathematical and programming details
may be found in Sullivan’s 1991 article [16]. Almost
exactly one hundred years after the classic Fricke
and Klein pictures, mathematicians now have the
tools to produce a 3-dimensional sequel.
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About the Cover
The cover exhibits two

views, made about a
century apart,  of polyhedra
drawn in stereographic
projection. The one at the
upper left was produced by
John Sullivan, and is a
variant of a picture he made
for the cover of The
Mathematica Journal for

Winter, 1991. It shows a stereographic image
in 3D of the tessellation of the 3-sphere
associated to the 120-cell discussed in
Stillwell's article. We know a great deal about
how it was produced because Sullivan’s
article in Mathematica Journal explained the
process. The projection has the geometry of
a bubble cluster, and he wrote his own
special soap-film shader for use with the
software tool Renderman, from Pixar
Animation Studios.

The other image first appeared in the
book Vorlesungen über die Theorie der
Elliptischen Modulfunktionen by Felix Klein
and Robert Fricke (1890). It is a
stereographic view of the tessellation of the
2-sphere associated to the dodecahedron,
which is the 3D analogue of the 120-cell. The
immediate source of the picture is a scan
made by Mark Goresky from a copy held by
the Princeton University Library. As to how
the figures in the book were originally
produced, we know very little. Asked about
this, John Stillwell replied, "I don't know
much for certain about those pictures, and
I'm afraid I don't know anyone who does.
The legend is that Klein arranged for
engineering students to make the pictures. It
is possible to construct the necessary circles
in the planar pictures by ruler and compass
construction. An article by Chaim Goodman-
Strauss in the January 2001 issue of the
American Mathematical Monthly recon-
structs the method. The shading by parallel
lines (not quite visible on the cover) was
perhaps done by some engraving tool, and
perhaps the shading on the picture of the
spherical tiling was also. The spherical tiling
impresses me the most actually, because the
ellipses and shading seem to be very
accurate. If these pictures really were done
by engineering students, I marvel at the
training they must have received!"

—Bill Casselman (covers@ams.org)
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